
Computational Intelligence Laboratory 2018 – Project Report
Road Segmentation on RGB Satellite Images

Mickey Vänskä∗, Jimmy Envall†, Ivan Tishchenko‡, Jonathan Granskog§,
ETH Zürich

Zürich, Switzerland
∗mickeyv@student.ethz.ch, †jenvall@student.ethz.ch, ‡tivan@student.ethz.ch, ‡granskoj@student.ethz.ch,

Abstract—The extraction of information from image and
video is one prevalent challenge in computer vision and
machine learning. A concrete problem is locating and labelling
objects in an image, for example during the conversion of
satellite images to road maps. In theory this allows map-
services to enhance and update their images automatically
by detecting new roads from updated satellite images as well
as to notify of discrepancies between machine-generated and
human-generated predictions. Factors such as large variances
in road designs, lighting conditions and occlusions make roads
surprisingly challenging to categorize correctly. This project
explores the use of various CNNs for labelling roads in RGB
satellite images and concludes the use of a modified ResNet18
to give similar mean F-scores as fully convolutional models. A
classification network used as a modified segmentation network
highlights the adaptability to many tasks having performed
equally well to state-of-the-art segmentation networks, such
as SegNet and RedNet. Although Residual Networks were
not designed for the task of image segmentation, they proved
to return adequate results when using non-fully-convolutional
designs. The results initiate an interesting question on the
design of future segmentation networks.

I. INTRODUCTION

Smartphone and computer owners can benefit today from
a variety of localization services with up-to-date information
of their environment. The information that these services rely
on is commonly based on current aerial and satellite images.
For a single city, this data could possibly be segmented by
a single person but this becomes infeasible on a large scale
because the segmentation has to be accurate and performed
quickly to offer up-to-date information.

In this paper, we survey a variety of neural networks for
binary classification of roads in RGB satellite images. All
of the methods are based on convolutional neural networks
(CNNs) and their performance is compared using a road
segmentation competition test set on Kaggle[1].

II. RELATED WORK

State-of-the-art CNNs for image classification problems
are ResNet[2] and Inception-v4 with Inception-ResNet-
v2[3]. The latter design is an amalgam of the core principles
of Inception-v1 and ResNet. Residual Networks are the first
successful design of very deep CNNs for image classification
that can easily scale to hundreds of layers and adapt to

various classification tasks while being robust to vanishing
gradients by heavy use of identity connections.

Fundamental work in semantic segmentation by Long et
al.[4] shows that fully convolutional networks can serve
as a powerful basis for pixel-wise segmentation. SegNet[5]
develops the idea further and provides a great framework
for pixel-wise multi-class semantic segmentation based on
an encoder-decoder architecture inspired by VGG-16[6].
The work on RedNet[7] demonstrates the use of a residual
encoder-decoder architecture using RGB images with depth
information for segmentation tasks.

Bittel et al.[8] applied a fully convolutional architecture
for street segmentation. Corentin et al.[9] proposed a so-
lution to the specific problem of road segmentation from
satellite images. Their approach involves a fully convolu-
tional network for pixel-wise segmentation combined with
VGG-19[6].

III. MODELS AND METHODS

Our models are built using Keras-2.2.01[10] with
Tensorflow-1.7[11] as the backend. Additionally, we use the
Python-library imgaug-0.2.5[12] for image augmentation.

A. Problem Statement

The data is initially split into two sets, a training and a test
set. The training set consists of 100 RGB satellite images
of size 400 × 400 pixels with grayscale ground-truth maps
of the same size. The latter have gradual borders between
road and non-road. The test set consists of 94 RGB images
of size 608× 608.

The set is unbalanced as there is more background than
roads in the dataset and therefore a combined F1-score is
used as a performance measure. The weights of the two
classes are unknown outside of the evaluation system. The
goal is thus to construct a classifier that assigns y ∈ {0, 1}n
to a subdivided image X ∈ Rn×3×16×16 such that the
combined F1 is maximized.

The accuracy of the classifier is measured at a granularity
of 16 × 16 pixels. Due to this limit, pixel-wise predictions
eventually have to be downsampled. Each patch having

1A problem affecting NCHW batch normalization was discovered in the
official release and fixed by us. Our models require this fix.

mailto:mickeyv@student.ethz.ch
mailto:jenvall@student.ethz.ch
mailto:tivan@student.ethz.ch
mailto:granskoj@student.ethz.ch


marked 25% or more of its pixels with road is labelled as
road, else the patch is marked as background.

B. Model Selection

In our discovery process we decided to approach the task
with two basic network classes, classification networks and
segmentation networks.

1) Reference Models: Two reference implementations
provided by the course are used for basic comparison. The
first one uses logistic regression. This implementation excels
in simplicity but produces only passable scores when trained
on the full training set. The model uses channel-wise mean
RGB values and their variances to predict the label of a
given patch.

Another reference implementation is a neural network
consisting of two convolutional layers followed by two fully
connected layers. This model produces similar scores as the
logistic regression model when trained for five epochs on
the unaltered training set.

2) Classification Networks: The ResNet architecture we
propose is a modified ResNet18[2] with average pooling
removed and using N × [Conv BatchNorm PReLU] in
basic building blocks (N subject to the block type; for our
approach N = 2). Predictions are generated by flattening
the output and adding two fully connected layers (Layer-
1: 98 neurons, Layer-2: 2 neurons) before applying softmax
activation. The network uses a context window of 112×112
and batch size of 16.

3) Segmentation Networks: One of the segmenation net-
works we use is SegNet[5]. In our implementation, we
modify the original design by means of discarding the ReLU
activation in the last [Conv BatchNorm ReLU] layer. Finally,
softmax is applied to get final predictions.

Another architecture is the aforementioned RedNet[7]. It
is implemented as described in the paper using bottleneck
and agent layers. The depth map part of the network is
omitted. Prediction is done as on SegNet.

C. Training Methodology (Common)

1) Validation Set: A validation set was generated from
the training set at runtime to allow inferring when networks
begin to overfit. Over the course of the project, a range of
8–16 images were chosen randomly to be part of this set.

2) Epoch: The notion of an epoch differs for classifica-
tion networks and segmentation networks.

Classification Networks: Number of patches from un-
modified training images divided by batch size.

Segmentation Networks: Number of full-size training
images divided by batch size.

3) Loss Function: Classification and segmentation net-
works were optimized using categorical cross-entropy loss
and Adam optimizer (αcls = 1e− 4, αsgm = 1e− 5).

4) Monte-Carlo Sampling: Classification networks use
a 16 × 16 patch surrounded with context for training and
classification. The training patches are generated live from
the augmented training images by sampling a random po-
sition from the augmented image where the patch is in the
center and the context not out of bound. The patch is chosen
from a randomly selected image from the training set. For
segmentation networks, this sampling is equal to picking
a random image to train on and is therefore not used for
segmentation networks.

D. Training Methodology (Classification Networks)
Classification networks were further trained with the fol-

lowing extensions.
1) Additional Metrics: In addition to cross-entropy, ac-

curacy, an averaged F1-score and a macro-averaged F1-
score were computed. The averaged F1-score was used to
introduce epoch-wise learning rate adjustments and early
stopping criteria.

2) Optimizers: Combining the optimizers Adam and
SGD (with Momentum) in a two-stage approach[13] has
proven to give the benefit of learning quickly using Adam
and, given a specific criterion, switch over to SGD for better
generalization once the network is pre-trained. We use such
an approach in a simplified manner where we first train with
learning rate adjustments and early stopping using an initial
learning rate of α = 1e− 4 for Adam and after termination
with Adam continue training with SGD (α = 1e − 4,
momentum = 0.9).

3) Learning Rate: Both optimizers are subject to learning
rate adjustments after 2/5 epochs (Adam/SGD) if no signifi-
cant changes to the average F1-score are encountered on the
validation set. For Adam the learning rate is multiplied by
0.1 while for SGD by 0.5. A minimum learning rate was
enforced at 1e− 7 for Adam and 1e− 8 for SGD.

4) Early Stopping: This approach leads to automatic
termination of the network if only negligible gains are made
on the validation set’s average F1-score after two learning
rate adjustments plus an additional epoch. A minimum delta
of 1e−3 for Adam and 1e−4 for SGD were set as criteria.

5) Activation Functions: We introduce the possibility to
use PReLU[14], a parametric version of leaky ReLU which
can be learned. It reduces the amount of dead filters and
allows to learn from negative inputs as well.

6) Context Window: To allow networks more robust
predictions, patches are given a context window. This means
a larger window is chosen in which the patch is centered and
the surrounding area gives the central patch context. This
generalizes the predictions of the network.

E. Data Processing
We employ two kinds of augmentations; epoch-wise and

batch-wise augmentation. Epoch-wise augmentations create
modified images where batch-wise augmentations are ap-
plied on.



Network (Epochs{Adam|SGD}) Private Score Public Score

All road (–) 0.16936 0.15256
All background (–) 0.83063 0.84743
Reference logistic regression (–) 0.50787 0.52291
Reference CNN (–|5) 0.52022 0.52762
ResNet18 (11|25) 0.87961 0.89088
RedNet (4000|–) 0.88023 0.88568
SegNet (3000|–) 0.87602 0.89037

Table I: Kaggle scores of explored models. Bold marks our
best result for the respective metric.

1) Epoch-wise: A new canvas of a larger size (either
fixed to 608 × 608 for segmentation or according to the
context window) is generated and the 400 × 400 image
put at a random position (fully including it) while filling
up the rest of the canvas with edge-wise reflections of the
400 × 400 image. Images are subject to horizontal and
vertical reflections with probability pmirror = 1

2 . Lastly,
the image is subject to: rotate, uniform scale and edge-
mirroring with psgm = 1

2 or pcls = 3
10 . These augmentations

are also applied on ground-truth maps. To compensate for
varying lighting conditions, contrast and brightness is also
augmented.

After the discovery phase of classification networks, we
found the test set to contain several images with concrete
roads, different from the asphalt roads in the training set.
Thus, only segmentation network RGB images were subject
to the following additional augmentations to compensate
for the lack of this type of roads in the training set with
pconcrete =

3
10 : additional brightness, sharpen, and emboss.

The additional augmentations are only applied to the road
in the image.

2) Batch-wise: Label-invariant augmentations are per-
formed on the context window selected from Monte-Carlo
sampling to keep computational costs low. These include flip
vertically, flip horizontally and rotate in multiples of 90°.
For segmentation networks, the operations are also applied
on ground-truth maps.

IV. RESULTS

A. Kaggle Scores

Table I summarises public and private F1-scores for our
networks in comparison to baseline networks. The private
scores were not available until after the end of competition.
The public score is 49% of the test data and the private 51%.

B. Metrics

Figures 1a, 1b and 1d visualize observed cross-entropy
losses for ResNet18, SegNet and RedNet50 respectively.
Figure 1c shows the accuracy for ResNet18.

C. Segmentation Examples

We show a high accuracy prediction of our proposed net-
work in Figure 2a and use Figure 2b for further discussion.

V. DISCUSSION

A. Kaggle Scores

Overall, the received scores are similar for segmentation
and classification networks. We can conclude that they
exhibit similar performance and all three give better re-
sults compared to simpler CNNs and are superior to linear
classifiers. The better scores are expected, although their
similarity leaves room for further research in what hyper-
parameters lead to better scores. A significant difference
between ResNet18 and segmentation networks is the training
time. ResNet18 trained in 5.2h on a GTX670 whereas
SegNet took 16.3h and RedNet50 21.7h on a GTX1080Ti.

B. Cross-Entropy Loss

Comparing the cross-entropy losses from our networks at
the respective epochs when they were evaluated shows low
correlation to Kaggle F1-scores. Comparing losses between
two network types is not advised due to different scoring
approaches.

When comparing SegNet and RedNet50 where the loss
is calculated similarly, these scores are hard to explain
and show the use of cross-entropy loss alone to be an
unsatisfactory indicator. Using a weighting for the classes
“road” and “non-road” may have been beneficial as the F1-
score on Kaggle seems to employ such an approach as can
be seen in Table I where marking all patches “road” gives a
much lower F1-score than marking all patches “non-road”.
This behavior was unexpected and was discovered after the
end of the competition.

In all networks, it can be seen that the respective models
have not exhibited overfitting as the validation loss is still
decreasing. Introducing new image data to train on would
have likely resulted in fitter models compared to using
augmented images. Furthermore, the difference in training
and test image dimensions is noteworthy as less data is
available to learn on than to predict. This poses an additional
challenge and requires solid data augmentation techniques to
result in generally fit networks.

C. Double Optimizer

There are insignificant gains in Figures 1a and 1c on the
validation and training set. Implementing the algorithm as
explained in [13] could have resulted in better scores yet it
proved difficult to implement with Keras. More investigation
on relevant hyper-parameters is recommended for ResNet18.

D. Predictions

Figure 2b is particularly interesting as predictions on the
large asphalt highway are marking most of it as background
yet parts of the concrete parking area are seen as roads. In
the former case, it was already mentioned that low amounts
of asphalt roads were observed in the training set and as
such most roads being misclassified as background by our
network. This can be counteracted by modifying the training



(a) ResNet18, cross-entropy loss.

(b) SegNet, cross-entropy loss.

(c) ResNet18, accuracy.

(d) RedNet50, cross-entropy loss.

Figure 1: Training metrics

(a) High accuracy.

(b) Low accuracy.

Figure 2: ResNet18 pre-
dictions

set to include more of these roads such that the network can
learn from them. In the latter case, this brings up another
observation that parking spaces sometimes are classified to
include roads in the training set, but in other cases not.
Therefore, it is unsurprising that our networks struggle with
the task. The labeling of parking areas is inconsistent.

E. Network Types

1) Classification Networks: The main idea of this ap-
proach is to utilize CNNs from image classification that
perform well. In order to use them, it is necessary to tile
the original images both in the training and test sets into
patches of fixed size (in our case 16 × 16) and perform
binary classification on the patch. The benefit is that images
of varying sizes can be fed to the network given that the
dimensions are multiples of the patch size. A disadvantage of
patch-wise classification is the loss of granularity compared
to pixel-granular predictions. The resulting predictions allow
less post-processing and sometimes appear too coarse.

2) Segmentation Networks: Alternatively, a fully convo-
lutional network that employs an encoder-decoder approach
can be used. The encoder-part downsamples the input with
convolutions or max-pooling and the decoder upsamples the
image back to its original dimensions.

The main advantage of this approach is the pixel-wise
granularity of the predictions, concretely each pixel has
two logistic units each representing the probability of being
“road” or “not road”. Fully convolutional approaches have
been shown useful in tasks where very detailed objects
exist. In the context of road segmentation, thin roads are
predictable with this approach. However, this benefit is

questionable as predictions are needed to be performed on
patches. Moreover, more non-linearities can be trained with
this approach as the complete image is used instead of
patches with context.

An unfortunate disadvantage is that it is impractical to
input parts of images as this results in different scalings of
roads. Additionally, processing patches independently and
stitching the results together may lead to unclean stitching
artifacts. Furthermore, these networks are of very high di-
mensionality and therefore training them is a more complex
task and finding sensible hyper-parameters is non-trivial and
time consuming.

VI. SUMMARY

We have shown that with the given road segmentation data
classification-based and segmentation-based CNNs perform
similarly. Thus, for similar problems, we propose the use
of a modified ResNet18 trained with two optimizers as
it performed similarly compared to much more complex
networks that require more time and involvement to find
good hyper-parameters. We expect that overall the perfor-
mance of all proposed networks can be improved with more
varying training images and by finding more appropriate
hyper-parameters. We expect the use of post-processing
on network-predictions to result in higher accuracies. An
interesting approach would be to do this post-processing
using another neural network as road design and placement
is highly variable.



REFERENCES

[1] “Kaggle,” 2018. [Online]. Available: https://www.kaggle.com/

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–
778.

[3] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi,
“Inception-v4, inception-resnet and the impact of residual
connections on learning.” in AAAI, vol. 4, 2017, p. 12.

[4] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition,
2015, pp. 3431–3440.

[5] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A
deep convolutional encoder-decoder architecture for image
segmentation,” arXiv preprint arXiv:1511.00561, 2015.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[7] J. Jiang, L. Zheng, F. Luo, and Z. Zhang, “Rednet: Residual
encoder-decoder network for indoor rgb-d semantic segmen-
tation,” arXiv preprint arXiv:1806.01054, 2018.

[8] S. Bittel, V. Kaiser, M. Teichmann, and M. Thoma, “Pixel-
wise segmentation of street with neural networks,” arXiv
preprint arXiv:1511.00513, 2015.

[9] C. Henry, S. M. Azimi, and N. Merkle, “Road segmentation
in sar satellite images with deep fully-convolutional neural
networks,” arXiv preprint arXiv:1802.01445, 2018.

[10] “Keras,” 2018. [Online]. Available: https://www.keras.io/

[11] “Tensorflow,” 2018. [Online]. Available: https://www.
tensorflow.org/

[12] A. Jung, “imgaug,” 2018. [Online]. Available: https:
//github.com/aleju/imgaug

[13] N. S. Keskar and R. Socher, “Improving generalization
performance by switching from adam to SGD,” CoRR, vol.
abs/1712.07628, 2017. [Online]. Available: http://arxiv.org/
abs/1712.07628

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification,” CoRR, vol. abs/1502.01852, 2015. [Online].
Available: http://arxiv.org/abs/1502.01852

https://www.kaggle.com/
https://www.keras.io/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/aleju/imgaug
https://github.com/aleju/imgaug
http://arxiv.org/abs/1712.07628
http://arxiv.org/abs/1712.07628
http://arxiv.org/abs/1502.01852

	Introduction
	Related Work
	Models and Methods
	Problem Statement
	Model Selection
	Reference Models
	Classification Networks
	Segmentation Networks

	Training Methodology (Common)
	Validation Set
	Epoch
	Loss Function
	Monte-Carlo Sampling

	Training Methodology (Classification Networks)
	Additional Metrics
	Optimizers
	Learning Rate
	Early Stopping
	Activation Functions
	Context Window

	Data Processing
	Epoch-wise
	Batch-wise


	Results
	Kaggle Scores
	Metrics
	Segmentation Examples

	Discussion
	Kaggle Scores
	Cross-Entropy Loss
	Double Optimizer
	Predictions
	Network Types
	Classification Networks
	Segmentation Networks


	Summary
	References

